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ABSTRACT

T_ presents /he efforts of Mechanical Dynamics, Inc. in obtaining a general formulation for flexible
bodies in a multibo'dy seltinS, JThe efforts being supported by MDI, both in house and externally are

summarized. The feusibility of using lumped mass approaches to modeling flexibility in a multibody dynamics
context is examined, The kinematics and kinetics for a simple system consisting of two rigid bodies connected
together by an elastic beam are developed in detail Accuracy, efficiency and ease of use using this approach are

some of the issues that are then looked at.

The formulation is then generalized to a "superelemenr' containing several nodes and connecting several bodies.

Superelement kinematics and kinetics equations are developed.

The feasibility and effectiveness of the method is illustrated by the use of some examples illustrating
phenomena common in the context of spacecraft motions.
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SCOPE OF THE PRESENTATION

. PROFILE OF MECHANICAL DYNAMICS, INC.

. MDI EFFORTS TO MODEL FLEXIBILITY

• LUMPED MASS APPROACHES TO FLEXIBILITY

• EXAMPLES
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PROFILE OF MECHANICAL DYNAMICS, INC.

. COMPANY BACKGROUND

• HISTORY

• PRODUCTS & SERVICES

• CUSTOMERS

• CURRENT PRODUCTS

• ADAMS

• ADAMS / MODAL

• POST PROCESSORS

• SERVICES

• CONSULTING

• TRAINING

• HOTLINE

. AVAILIBILITY OF PRODUCTS
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MDI EFFORTS IN FLEXIBIL_Y

• INTERNAL R&D

. LUMPED MASS APPROACHES TO FLEXIBILITY

• EXTERNAL R&D

• UNIVERSITY FUNDED RESEARCH IN MODAL APPROACHES

INTERFACE TO FEA PROGRAMS

• NASTRAN

• ANSYS
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LUMPED MASS APPROACH TO FLEXIBILITY
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EXPLODED VIEW OF INITIAL CONFIGURATION
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PART 2

BEAM

PART 2

2

BEAM DEFORMATION DURING MOTION
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TRANSLATIONAL DISPLACEMENT COMPUTATION

PART 1

PART 2

R1

R2

G

S12 = R2 + r2 - R1- rl

1S12 = A 1G [ R2 +A2Gr 2 . R 1 -A1Gr I ]

IA2,2 = IS12 - 1L

1L = {L 00} T
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ANGULAR DISPLACEMENT COMPUTATION

_2'2

SPACE 1.2-3 ANGLES ARE USED FOR MEASURING ANGLES

maa_

C2 C3 S1 $2 C3 - S 3 C1 CI $2 C3 + S 3 S1

C2 $3 $1 $2 $3" C3 St Ct $2 $3 + C3 $1

- S2 $1 C2 C1 C2

B2 = SIN'l(-a31)

IF fl2¢ ]-]/2 THEN

fl I = ARCTAN2 ( a 3z, a 33 )

al3-az2) " B16 3 = ARCTAN2 ( a 12+ a 13,

ELSE IF f12 = ]-[ / 2 THEN

f13 = ARCTAN2 ( a zl,a 11)

f13 = ARCTAN2 ( a lz,a 13) + f13

B2,2 = [ fll 1_2 f13 IT
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VELOCITY COMPUTATION

PART 1

r2
PART 2

R1

R2

(1)'V2'2 = (G)V21 " W l X S21

1 V 2'2 = ALI[ AIG(RI - ]_j ) - AJIC0~ I r 1

- co~_j(AJIr I + AJGR1 . AJGR1) ]

(012 = (t_2 - _I

1_o_2= _- [ AJXos . coj ]
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FORCE COMPUTATION

FORCES AT ORIGIN OF COORDINATE SYSTEM ON REF. FRAME 1

1F2 = " [ Kll IA2'2+KI2 B12]

" [ CII 1v2'2+C12 2212]

1T2 = [ K21 1A2'2+K22 B12]

[ C21 lV2'2+C22 1_12]

K is THE STANDARD MATRIX FOUND IN ANY STRUCTURAL ANALYSIS TEXT

FORCES AT ORIGIN OF COORDINATE SYSTEM ON REF. FRAME 2

SINCE THE BEAM IS MASSLESS, APPLYING LAWS OF EQUILIBRIUM :

I+F2 =0

IEl=-lE2

T1 + 2 + S 12 X F 2 = 0

1TI=-[IT2 + lS"'12 IF2]
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ACCURACY OF METHOD

. DIRECTLY RELATED TO DEGREE OF DISCRETIZATION

• METHOD DOES NOT YIELD WRONG ANSWERS

• DEGREEOFDISCRETIZATIONDEPENDENTONFREQUENCY

CONTENTDESIRED.ADAMS/MODAL WILLCOMPUTE

EIGENVALUESANDEIGENVECTORSFORANYADAMSMODEL.

CANANIMATELINEARMODELUSINGSELECTEDSETOFMODE

SHAPESANDFREQUENCIES.



RR.Ryan (313) 936-2922
University of Michigan

FLEXIBLE BODY DYNAMICS

Benchmark Problem #1: Uniform Cantilever Beam Spin-up

The inset of Fig. 1 shows a uniform, homogeneous, cantilever beam supported by a circular hub of
radius r. At time t = 0, the system is at rest in a Newtonian reference frame and the beam is undeformed.
Subsequent to this initial time, the hub is made to rotate about a vertical axis X - X, passing through the

center of the hub, in such a way that f_, the angular speed of the hub, is given by

,f (2IS) - Cr.s/-)sin(,a/r.s)] ,ad/ c 0 < < iS secfl(t) t 6 rad/eec t > 15 sec

which represents a smooth transition from zero hub motion to a constant angular speed of 6 rad/sec. The
beam has a length L, Young's modulus E, shear modulus G, mass per unit length p, and a circular cross-
section of area A and area moment of inertia 1.

The solid line in the figure below shows the time history of the displacement of the beam tip, in the
plane of rotation, relative to a line fixed in the hub and originally parallel to the eentroidal axis of the beam.
This result was obtained using the theory and algorithm presented in Refs.[1] and [2] with three assumed

modes and the following parameter values

r=0m p= 1.2kg/m

L= 10m A=4x 10 -4m 2

E= 7 x 101°N/m 2 G= 3 x 101°N/m 2 l=2x 10-7m 4

All external forces were neglected and the assumed modal functions were chosen to be equal to the first three

eigenfunctions of an identical uniform cantilever beam with its root fixed in a Newtonian reference frame.
The numerical integration was carried out using a 4 th - 5 th order, variable step-size, Runge-Kutta-Merson
method with a print step and initial time step of .03 seconds and an error tolerance of 1 x 10 -e. The dashed
line result was produced with an algorithm based on the assumed-mode formulation utilized in most flexible

multibody programs. This result was verified by Fidelis Eke [(818) 354-2916] at Jet Propulsion Labs using
DISCOS.
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F=g.1 Spin-up of Homogeneous Uniform Cantilever Beam

[1] Ryan, R.R., "Flexibility Modeling Methods in Muttibody Dynamics," Ph.D. dissertation, Stanford
University, Available frem University Microfilms, Ann Arbor, Michigan, 1986.

[2] Kane, T.R., Ryan. R.R., and Banerjee, A.K., "Dynamics of a Cantilever Beam Attached to a Moving
Base." Journal of Guidance. Control, and Dynamics, Vol.10, No.2, March-April, 1987.
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EFFICIENCY OF METHOD

• THIS METHOD IS USABLE FOR SMALL TO MEDIUM SIZE PROBLEMS

( MEDIUM = 300 RIGID AND FLEXIBLE DOF )

• FOR LARGER PROBLEMS IT MAY PROVE TO BE MORE CPU INTENSIVE

THAN DESIRABLE.

• THE CPU TIME TAKEN FOR A SIMULATION IS LINEARLY

PROPORTIONAL TO THE NUMBER OF FLEXIBLE BEAMS IN

THE SYSTEM



O_
E

F-

O.
<_)

E
0
(U

0

L
O)
c_
E

7"

\

IIII IIII IIII

I

IIII

r,J 0.. :_) _-" O9 _ O 0 C'O L0,-_

_D
(70

LA
Od

_D
(TJ

I.A

m

m

_D

m

I
_D

to
E
O

o

i.

_o
E

7"



0..

_0
c-
O

-,-G

0

O"
bJ

0

f.m
a)
.0
E

7"

\

_D

w

l

0_)

Q

_D Uh _D Llh

_ O0

_D
_D

_ ["--

m

_ (.0

m

m

_ LF_

- (S)
_m

CO

0.]

Q

_ v_ _ 0 0 _ _

LO
C
0

.r.4

o

o-
W

0

_D

E

Z

260



- MECHANICAL DYNAMICS, INC. -

EASE OF USE

• THE RESULTING PROGRAM IS EXTREMELY EASY TO USE.

• USERS DO NOT NEED STRONG FEA BACKGROUND TO CREATE

MODELS OF STRUCTURES

• RECOGNITION AND SELECTION OF PROPER MODES IN AN ART.

THE RESULTS ARE ONLY AS GOOD AS THE SELECTED MODES.

DIFFICULTY ALLEVIATED IN THIS APPROACH.
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GENERALIZATION TO SUPERELEMENTS

PART 2 PART 3

2,2'

SUPERELEMENT

e
PART 1

(BASE PART)

PART 4

NODES

LOCATION OF NODES 2, 3, 4 WRT. TO A KNOWN
REFERENCE FRAME

MASS AND INERTIA PROPERTIES FOR EACH NODE
OBTAINED FROM MASS MATRIX.

LOCATION AND ORIENTATION OF COORDINATE SYSTEMS

2 ON PART 2

3 ON PART 3

4 ON PART 4

2' ON PART 1

3' ON PART 1

4' ON PART 1
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ASSEMBLY

• PRE-TENSION AND INITIAL DISPLACEMENTS

AT CONNECTION POINTS 2-2', 3-Y, 4-4'

FLEXIBILITY PROPERTIES

• STIFFNESS MATRIX

• DAMPING MATRIX

DISPLACEMENT COORDINATES

1 A : [ 1A2'2 lAy3 1A4'4] T

f_ = [ 1_2, 2 1_3, 3 B4,4 IT

VELOCITY COORDINATES

I V = [1V2,2 IVy3 IV4'4] T

1 (0 = [1(02'2 1(03'3 1(04'4] T

FORCEDEFINITIONATCOORDINATESYSTEMS

I F = [1F2 1F3 IF4] T

IT = [112 113 IT4] T

2, 3, 4
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FORCE COMPUTATION AT COORDINATE SYSTEMS 2, 3, 4

IF = -[ KII l_i +KI2 B ]

-[ CII I v +C12 1O)] +F0

1 T = - [ K21 1A +K22 I_ ]

- [ C21 I V +C22 lO3 ] +To

FORCE AT COORDINATE SYSTEM I

IF I =- [IF2 + IF 3 + IF4]

T 1 + 2 + T 3 + T 4 + S 12x F 2 + S 13 X

IT 1 = - [ IF2 + IF 3 + IF4]

[IS-12 IE2 + IS-13 IF3 +

F3+ s 14 x

1_-14 1E4]

F 4 = 0


